
 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 1

Nunit V2.1 Final Release - 1 September 2003

This is the release candidate for NUnit 2.1, the third major release of NUnit and the second since
it was rewritten to take advantage of .NET custom attributes. Highlights of this release include
support for the .NET framework 1.1, the ability to run test suites across multiple assemblies,
improvements to the GUI interface, new command line switches for both GUI and Console
runners, some degree of integration with Visual Studio and new TestFixtureSetUp and
TestFixtureTeardown attributes.

Installation

By default the installation program places the all files in the directory:
C:\Program Files\Nunit V2.1

In the installation directory there are three sub-directories: bin, doc and src. The samples directory
is located under src.

Start Menu

The installation program places a number of items in the Start menu. There is a shortcut to the
Forms interface executable. (There is also a shortcut placed directly on the desktop). In addition
to the executable file the menu items under Samples bring up the directory containing each
particular sample. The source shortcut brings up the directory for the entire project. The Tests
shortcuts may be used for running the installation verification tests.

Installation Verification

You can verify that the installation has worked successfully by installing the program and running
the tests that were used to build the program. Below is a screen shot of a successful run after
loading nunit.tests.dll. This release has 478 tests and they should all run successfully.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 2

Timing Tests

The assembly timing-tests.dll contains several long-running tests that are used to verify that all
remoting timeout problems have been fixed. The test cases all run for six to 12 minutes and give
no indication whatsoever that they are working! This is required since correct handling of a non-
communicative user test is what these tests are all about.

Additional Tests

Additional tests are included with the samples and in separate assemblies used as data by the
verification tests themselves. Failures or not run conditions in these tests are intentional. You may
load all the tests at once by running NUnit and opening the nunit.sln file.

Manual Installation

Those building NUnit 2.1 from source code may either build the install project and run the msi
that is created or perform a manual installation by following these steps:

Copy the following files to the target directory:

• nunit.framework.dll
• nunit.extensions.dll
• nunit.uikit.dll
• nunit.util.dll
• nunit-console.exe
• nunit-console.exe.config (see note 2)
• nunit-gui.exe
• nunit-gui.exe.config (see note 2)

Run gacutil.exe to install nunit.framework.dll into the GAC.

Create shortcuts as needed.

 If you want to be able to run the nunit tests, copy the following files to the same location as the
others:

• mock-assembly.dll
• nonamespace-assembly.dll
• notestfixtures-assembly.dll
• nunit.tests.dll
• nunit.tests.dll.config (see note 2)
• timing-tests.dll

Notes:

1. Some of the nunit tests require access to the source to run successfully. The source tree
should be copied into a directory named src with the same parent as the directory containing
the assemblies so that the solution may be found at ..\src\nunit.sln.

2. The three config files listed above are found in the respective source directories in two
versions, for .NET version 1.0 and 1.1. In each case, copy the appropriate config file. For
example, if .NET 1.1 is to be used, you would copy nunit-gui.exe.1.1.config from the nunit-
gui directory to the target directory as nunit-gui.exe.config. For further information on the use
of config files with NUnit, see the section on Configuration Files later in this document.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 3

Changes in V2.1

The following list includes most of the major changes from NUnit 2.0 to 2.1. Text Like This
refers to more detail available in a later section of this document.

The distributed version of NUnit 2.1 is now built using Visual Studio 2003 The solution and
project files in this Beta can only be loaded by Visual Studio 2003. Those needing to build
with Visual Studio 2002 will need to convert the project, solution and resx files.

NUnit can run against .NET framework versions 1.0 or 1.1. Separate config files are provided for
using either version. The install detects the highest version installed and sets up the config for
that version.

NUnit now supports loading and running tests across multiple assemblies in both the console and
the GUI. This may be done on an adhoc basis or by creating NUnit test projects saved in files
of type NUnit. For more information see Multiple-Assembly Support in this document.

• Information about one or more test assemblies may now be persisted as NUnit Test Projects.
This is a file of type .nunit in XML format which supports the definition of multiple
configurations each containing one or more assemblies.

• TestFixtureSetUp and TestFixtureTearDown attributes are now recognized. Methods marked
with these attributes will be run before and after the tests in a fixture. Unlike the standard
SetUp and TearDown attributes, these methods are invoked only once, before and after all the
tests are run. See Attributes section below for more info.

• The Assertion class is now deprecated and has been replaced with the Assert class supporting
a new set of static method names. See Assert section in this document.

• The reporting of test failures and errors provides more information. The specific type of an
exception is reported as well as any inner exceptions. Exceptions in TearDown no longer hide
the original test exception.

• NUnit now runs under Windows 98 and ME. Automatic reload of changed assemblies is
disabled in non-NT environments.

Forms Interface

There are a number of additional menu items. See Main Menu and Context Menu.

The GUI interface now runs tests on a separate thread. This allows the tree display to update as
execution proceeds. A Stop button now allows cancelling a test run. An option to cancel the
run is also displayed if the user attempts to exit while a test is running.

The GUI test threads run in the MTA by default. A configuration file setting may be used to run
them in an STA.

XML output from a test run may now be saved using the Tools | Save Results as XML… menu
item. The format is the same as that used by the Console runner.

When an exception occurs while trying to load, unload or run a test, the complete stack trace for
that exception is available through the Tools | Exception Details… menu item.

The Tools | Options… menu item allows setting a number of options. See Options Dialog later in
this document for more info.

Automatic reloading of test assemblies may now be disabled. An alternate approach of reloading
assemblies whenever a run begins is also available as an option.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 4

If Visual Studio support is enabled, Visual Studio project and solution files may be opened and
Visual Studio projects may be added to an NUnit test project. Currently, C#, VB.NET, J# and
managed C++ projects are supported. See Visual Studio Support below in this document for
more information.

When a Visual Studio or NUnit project is loaded, the user may switch between the available
configurations causing the tests to be reloaded. A Configuration Editor allows adding,
deleting or renaming configurations.

The GUI allows creating and modifying NUnit Test Projects through the Project Editor.

A Properties window is now availble to display information about any test in the tree. It may be
pinned to allow quickly examining the results of different tests. See Test Properties in this
document for more info.

Window layout has been streamlined, eliminating one splitter and reducing the area above the
tabs to the minimum size needed.

The File | Recent Assemblies menu item is now called Recent Files since it may hold Visual
Studio or NUnit project names. The user may now set the number of items kept in the list.
Loading of the most recently used file may be disabled by a command line switch.

Nested Classes are now shown in the TreeView using the format OuterClass+InnerClass.
[Showing InnerClass under OuterClass was confusing when both classes contained tests.]

The contents of the TreeView display are now sorted by name and tests execute in the order of
the display to allow easier tracking.

Splitter positions are now saved in the registry and restored on startup.

A View menu includes options for Expanding and Collapsing tree nodes, including Expand All,
Collapse All, Expand Fixtures and Collapse Fixtures.

Console Interface

The console interface command line parameters have been modified to support loading of
multiple assemblies, Visual Studio projects and NUnit projects. Several new switches are
available. See the Command Line Parameters section in this document for details.

The console runner and tests now run in an STA.

When run in debug mode, the console output is now sent to the Visual Studio Output window.
Clicking on a test failure brings up the test file in the editor at location of the Assert.

Formatting of console output has been improved so that redirected output may be examined
conveniently in an editor that requires CRLF at the end of each line.

All errors are now trapped and a message is displayed.

Limitations

NUnit can only load assemblies as permitted under .NET’s Code Access Security. Using the
default settings, this means that you will be unable to load from any UNC path, including one
that specifies the name of the local computer. Although you may use the .NET Framework
configuration utility to allow loading of such applications, you must do this with care. Often,
the simplest approach is to copy assemblies being tested to your local drive.

See Visual Studio Support for limitations on loading Visual Studio solution files.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 5

Upgrading from V2.0 to V2.1

You will need to recompile your test assemblies using the new nunit.framework assembly.

Because the old Assertion class is marked with the obsolete, you will receive warning messages
until you have converted to the new Assert class.

Alternatively, you may load and run your V2.0 tests using NUnit 2.1. This requires use of binding
redirects in a configuration file. The file nunit20under21.config in the installation directory is
provided as an example.

Upgrading from V1.11 to V2.1

Upgrading from V1.11 to V2.1 requires a minimal amount of work. Since the framework still
looks for test methods by name in addition to the attributes no test method will need to be
modified to upgrade to the new version. The only source code change required is to remove the
constructor with the string parameter in the class that inherits from TestCase. The only
requirement is that you have a default constructor. If there was significant processing in the
existing constructor than just move it to the default constructor. The only other change is to
change the reference to nunit.framework.dll instead of the V1.x framework dll. This method has
been marked using the Obsolete attribute so you will get warnings but they can be ignored for
now!

Suite property

The existing Suite property will not be found by the new program. These must be changed to the
“Suite” attribute for the test runners to find them. Another alternative is that these suites are no
longer needed due to the automatic capability that is built in to the new version.

AssertionFailedError

If you have written code expecting the exception, AssertionFailedError this must be changed to
AssertionException.

Multiple-Assembly Support

This release of NUnit allows loading suites of tests from multiple assemblies. A suite is
constructed which contains as tests the root suite for each assembly. Tests are run and reported
just as for a single assembly.

In the past, test writers have been able to rely on the current directory being set to the directory
containing the assembly. For the purpose of compatibility, the current directory is set to the
directory containing an assembly whenever any test from that assembly is being run.

Because some assemblies may rely on unmanaged dlls in the same directory, the current directory
is also set to that of the assembly at the time the assembly is loaded. However, in cases where
assemblies from multiple directories are loaded, this may not be sufficient and the user may need
to place the directory containing the unmanaged dll on the path.

NUnit Test Projects

Running tests from multiple assemblies is facilitated by the use of NUnit test projects. These are
files with the extension .nunit containing information about the assemblies to be loaded. The
following is an example of a hypothetical test project file:

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 6

<NUnitProject>
 <Settings activeconfig="Debug"/>
 <Config name="Debug">
 <assembly path="LibraryCore\bin\Debug\Library.dll"/>
 <assembly path="LibraryUI\bin\Debug\LibraryUI.dll"/>
 </Config>
 <Config name="Release">
 <assembly path="LibraryCore\bin\Release\Library.dll"/>
 <assembly path="LibraryUI\bin\Release\LibraryUI.dll"/>
 </Config>
</NUnitProject>

The project contains two configurations, each of which contains two assemblies. The Debug
configuration is currently active. By default, the assemblies will be loaded using the directory
containing this file as the ApplicationBase. The PrivateBinPath will be set automatically to
LibraryCore\bin\Debug;LibraryUI\bin\Debug or to the corresonding release path.

XML attributes are used to specify non-default values for the ApplicationBase, Configuration
File and PrivateBinPath. The Project Editor may be used to create or modify NUnit projects.

Configuration Files

NUnit uses configuration files for the test runner executable – either nunit-console.exe or nunit-
gui.exe – as well as for the tests being run. Settings that pertain to NUnit should be in the nunit-
console.exe.config and nunit-gui.exe.config, while those that pertain to your own application and
tests should be in a separate configuration file.

NUnit Configuration Files

The console and gui config files are identical except for the STA appsetting, which is only used
by the gui and will be ignored if present in the console config file. The main purpose of the config
is to allow NUnit to run with various versions of the .NET framework. NUnit 2.1 is built using
version 1.1 of the framework, but can be made to run against version 1.0. You should do this if
you only have version 1.0 installed, or if your application requires version 1.0. Separate config
files are provided for use with each version and should be copied and modified as necessary. For
example, to use the nunit-gui.exe with version 1.0 of the framework, you should copy the file
nunit-gui.exe.1.0.config to the bin directory, renaming it to nunit-gui.exe.config.

Test Configuration File

When a configuration file is used to provide settings or to control the environment in which a test
is run, specific naming conventions must be followed.

If a single assembly is being loaded, then the configuration file is given the name of the assembly
file with the config extension. For example, the configuration file used to run nunit.tests.dll must
be named nunit.tests.dll.config and located in the same directory as the dll.

If an NUnit project is being loaded, the configuration file uses the name of the project file with
the extension changed to config. For example, the project AllTests.nunit would require a
configuration file named AllTests.config, located in the same directory as AllTests.nunit. The
same rule is followed when loading Visual Studio projects or solutions.

Generally, you should be able to simply copy your application config file and rename it as
described above. However, see the next section if you wish to run tests compiled for NUnit 2.0.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 7

NUnit 2.0 Tests Under NUnit 2.1

To run NUnit 2.0 tests without recompiling them, you must modify your test configuration file to
cause the tests to use version 2.1 of the framework dll. The file nunit20under21.config is provided
as a template for this purpose. Be sure to use the appropriate config files for NUnit itself,
depending on the version of the .NET framework your application requires.

Attributes

This section describes new or changed attributes supported in NUnit 2.1.

TestFixtureSetUp and TestFixtureTearDown

These two attributes are used inside a TestFixture to provide a set of functions that are performed
once before any tests are run (TestFixtureSetUp) and after the last test (TestFixtureTearDown). A
TestFixture can have only one TestFixtureSetUp method and only one TestFixtureTearDown
method. If more than one of each type is defined the TestFixture will compile but it will not be
run. Note that a fixture may have both a TestFixtureSetUp and a SetUp method and both a
TestFixtureTearDown and a TearDown method.

TestFixtureSetUp and TestFixtureTearDown are provided for use when performance
considerations make it inconvenient to use SetUp and TearDown, which are run for each test
case. Users should consider that use of these attributes leads to greater interdependency between
tests. In general, use SetUp and TearDown in preference to these attributes.

TestFixtureSetUp/TestFixtureTearDown Example

This example shows the order in which the various methods are called.
[TestFixture]
public class TestFixtureSetUpAndTearDownTest
{
 [TestFixtureSetUp]
 public void RunBeforeAllTests()
 {
 Console.WriteLine(“TestFixtureSetUp”);
 }

 [TestFixtureTearDown]
 public void RunAfterAllTests()
 {
 Console.WriteLine(“TestFixtureTearDown”);
 }

 [SetUp]
 public void RunBeforeEachTest()
 {
 Console.WriteLine(“SetUp”);
 }

 [TearDown]
 public void RunAfterEachTest()
 {
 Console.WriteLine(“TearDown”);
 }

 [Test]
 public void Test1()
 {
 Console.WriteLine(“Test1”);
 }

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 8

 [Test]
 public void Test2()
 {
 Console.WriteLine(“Test2”);
 }

}

The output from this test fixture would be:
 TestFixtureSetUp
 SetUp
 Test1
 TearDown
 SetUp
 Test2
 TearDown
 TestFixtureTearDown

If Test2 were run alone the output would be:
 TestFixtureSetUp
 SetUp
 Test2
 TearDown
 TestFixtureTearDown

Assert

The Assert class replaces the old Assertion class and contains static methods that replace each of
the methods of that class:

Assert.IsTrue(bool);
Assert.IsFalse(bool);
Assert.IsNull(bool);
Assert.IsNotNull(bool);
Assert.AreSame(object, object)
Assert.AreEqual(object, object);
Assert.AreEqual(int, int);
Assert.AreEqual(float, float, float);
Assert.AreEqual(double, double, double);
Assert.Fail();

Each method also has overloads that take a message to be displayed as the last argument.

Command Line Parameters

Forms Interface

The forms interface may be run with or without the name of a file containing tests on the
command line. If the program is started without any options it automatically loads the most
recently loaded assembly.

Run without loading an Assembly

To supress loading of the most recent assembly, use the /noload switch:
nunit-gui.exe /noload

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 9

Specifying an Assembly

The other option is to specify an assembly or project file name on the command line. The
following will start the forms interface with the assembly nunit.tests.dll:

nunit-gui.exe nunit.tests.dll

The following will start the forms interface loading the same assembly through it’s Visual
Studio project definition:

nunit-gui.exe nunit.tests.csproj

Assuming an NUnit test project has been created, the following will again load the
nunit.tests.dll:

nunit-gui.exe nunit.tests.nunit

Specifying which Configuration to load

When loading a Visual Studio project or NUnit project, the first configuration found will be
loaded by default. Usually this is Debug. The configuration loaded may be controlled by
using the /config switch. The following will load the Release configuration of the
nunit.tests.dll:
Nunit-gui.exe nunit.tests.csproj /config:Release

Specifying Multiple Assemblies

The Forms Interface does not provide for specifying more than one assembly on the
command line. Multiple-assembly projects must be loaded by specifying the name of a Visual
Studio solution file or an NUnit test project. See Visual Studio Support and NUnit Test
Projects respectively.

Console Interface

The console interface has a few additional options compared to the forms interface. In addition, it
supports entry of multiple assemblies on the command line. The console program must always
specify an assembly or project file on the command line. The console interface always creates an
XML representation of the test results. This file by default is called TestResult.xml and is placed
in the working directory.

Note: By default the nunit-console program is not added to your path. You must do this
manually if this is the desired behavior.

Specifying an Assembly

The console program must always have an assembly or project specified. To run the tests
contained in the nunit.tests.dll use the following command.

nunit-console.exe nunit.tests.dll

To run the tests in nunit.tests.dll through the Visual Studio project, use:
nunit-console.exe nunit.tests.csproj

To run the same tests through an NUnit test project you have defined, use:
nunit-console.exe nunit.tests.nunit

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 10

Specifying an Assembly and a Fixture

When specifying a fixture you must give the full name of the test fixture along with the
containing assembly. For example, to run the NUnit.Tests.AssertionTests in the nunit.tests.dll
assembly use the following command.

nunit-console /fixture:NUnit.Tests.AssertionTests nunit.tests.dll

The /fixture option may be used with Visual Studio or NUnit projects as well.

Specifying the XML file name

As stated above the console program always creates an XML representation of the test
results. To change the name to console-test.xml use the following command line option,

nunit-console /assembly:nunit.tests.dll /xml:console-test.xml

Specifying the Transform file

The console interface uses XSLT to transform the test results from the XML file to what is
printed to the screen when the program executes. The console interface has a default
transformation that is part of the executable. To specify your own transformation named
myTransform.xslt use the following command line option.

nunit-console nunit.tests.dll /transform:myTransform.xslt

Note: For additional information see the XML schema for the test results. This file is in the
same directory as the executable and is called Results.xsd. The default transform Summary.xslt
is located in the nunit-console source directory.

Specifying which Configuration to run

When running tests from a Visual Studio project or NUnit project, the first configuration
found will be loaded by default. Usually this is Debug. The configuration loaded may be
controlled by using the /config switch. The following will load and run tests for the Release
configuration of the nunit.tests.dll:
Nunit-console.exe nunit.tests.csproj /config:Release

Specifying Multiple Assemblies

You may run tests from multiple assemblies in one run using the console interface even if
you have not defined an NUnit test project file. The following command would run a suite of
tests contained in assemby1.dll, assembly2.dll and assembly3.dll:

nunit-console.exe assembly1.dll assembly2.dll assembly3.dll

Note: You may specify multiple assemblies but not multiple NUnit or Visual Studio projects
on the command line. Further, you may not specify an NUnit or Visual Studio project
together with a list of assemblies.

Note: The /fixture option may be used with multiple assemblies but it’s obviously more
efficient to simply specify the assembly that contains the fixture.

Additional Switches

/wait – Require user input to exit program.

/xmlconsole – Display XML output to the console.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 11

/nologo – Suppress display of the NUnit informational message.

/help – Display help for the command

Main Menu

File

New Project…

Closes any open project, prompting the user to save it if it has been changed and then opens a
FileSave dialog to allow selecting the name and location of the new project.

Open…

Closes any open project, prompting the user to save it if it has been changed and then opens a
FileOpen dialog to allow selecting the name and location of an assembly, a test project or (if
Visual Studio support is enabled) a Visual Studio project.

Close

Closes any open project, prompting the user to save it if it has been changed.

Save

Saves the currently open project. Opens the Save As dialog if this is the first time the project
is being saved.

Save As…

Opens a FileSave dialog to allow specifying the name and location to which the project
should be saved.

Reload

Reloads the currently loaded project using the latest saved copy of each assembly.

Recent Files…

Displays a list of recently opened files from which the user is able to select one for opening.

Exit

Closes and exits the application. If a test is running, the user is given the opportunity to
cancel it and or to allow it to continue. If the open project has any pending changes, the user
is given the opportunity to save it.

View

Expand

Expands the currently selected tree node.

Collapse

Collapses the currently selected tree node.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 12

Expand All

Expands all nodes of the tree.

Collapse All

Collapses all nodes in the tree to the root.

Expand Fixtures

Expands all the tree nodes representing fixtures.

Collapse Fixtures

Collapses all the tree nodes representing fixtures.

Properties…

Displays the Properties Dialog for the currently selected test.

Project

Configurations (popup)

Debug, Release, etc.

Selects one of the available configurations

Add…

Opens the Add Configuration Dialog, which allows entry of the name of the new
configuration and specifying an existing configuration to use as a template.

Edit…

Opens the Configuration Editor

Add Assembly…

Displays a FileOpen dialog to allow selecting an assembly to be added to the active
configuration of the currently open project.

Add VS Project…

Only available if Visual Studio Support is enabled. Displays a FileOpen dialog to allows
selecting a Visual Studio project to be added to the currently open project. Entries are added
for each configuration specified in the VS project, creating new configurations in the test
project if necessary.

Edit…

Opens the Project Editor.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 13

Tools

Save Results as XML…

Opens a FileSave Dialog for saving the test results as an XML file.

Options

Displays the Options Dialog.

Help

Help

Not yet available.

About NUnit…

Displays info about your version of NUnit and a link to the nunit.org site.

Context Menu

The context menu displays when one of the tree notes is right-clicked.

Run

Runs the selected test. Disabled if a test is running.

Expand

Expands the selected test node – invisible if the node is expanded or has no children.

Collapse

Collapses the selected test node – invisible if the node is collapsed or has no children.

Properties

Displays the Test Properties for the selected test node.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 14

Options Dialog

The Options Dialog is displayed using the Tools | Options menu item and allows the user to
control some aspects of NUnit’s operation:

 Recent FIles

The text box allows the user to choose
the number of entries to display in
the recent files list.

If “Load most recent project at startup”
is checked, the GUI will load the
last file opened unless it is run with
a specific filename or with the
/noload parameter.

The list box allows selecting the degree
of expansion of the tree when tests
are loaded:

Expand – expands all tests

Collapse – collapses all tests

Hide Tests – expands all suites
except for the fixtures themselves.

Auto – selects one of the above
based on the space available for the
tree display.

Assembly Reload

If “Reload before each test run” is checked, a reload will occur whenever the run button is
pressed whether the assemblies appear to have changed or not.

If “Reload when test assembly changes” is checked, assemblies are watched for any change and
an automatic reload is initiated. This item is disabled on Windows 98 or ME.

If “Clear results when tests change” is checked, an automatic or manual reload will reinitialize all
test nodes in the tree (grey display) – if it is not checked, result information for tests that do
not seem to have changed will be retained.

Visual Studio

If “Enable Visual Studio Support”is checked, the user will be able to open Visual Studio projects
and solutions and add Visual Studio projects to existing test projects.

Visual Studio Support

Visual Studio support in this release is a sort of “poor man’s integration.” We have implemented
a number of features while avoiding any that would require using an Addin or otherwise
interacting with the Visual Studio extensibility model.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 15

Running From Within Visual Studio

The most convenient way to do this is to set up a custom tool entry specifying the path to NUnit-
Gui as the command. For a C# project, you may wish to use $(TargetPath) for the arguments and
$(TargetDir) for the initial directory. If you would like to debug your tests, use the Visual Studio
Debug | Processes… menu item to attach to nunit-gui.exe after starting it and set breakpoints in
your test code as desired before running the tests.

Using Console Interface to Debug Applications

When the nunit-console program is run in debug mode under Visual Studio, it detects that it is
running in this mode and sends output to the Visual Studio output window. Output is formatted so
that double clicking any error or failure entries opens the appropriate test file at the location
where the failure was detected.

Opening Visual Studio Projects

When Visual Studio support is enabled, the File Open dialog displays the following supported
Visual Studio project types: C#, VB.Net, J# and C++. The project file is read and the
configurations and output assembly locations are identified. Since the project files do not contain
information about the most recently opened configuration, the output assembly for the first
configuration found (usually Debug) is loaded in the GUI. The tree shows the projedt as the top-
level node with the assembly shown as its descendant.

When tests are run for a Visual studio project, they run just as if the output assembly had been
loaded with one exception. The default location for the config file is the directory containing the
project file and it’s default name is the same as the project file with an extension of .config.

For example, the following command would load the tests in the nunit.tests assembly using the
configuration file nunit.tests.dll.config located in the same directory as the dll.

nunit-gui.exe nunit.tests.dll

On the other hand, the following command would load the tests using the configuration file
nunit.tests.config located in the same directory as the csproj file.

nunit-gui.exe nunit.tests.csproj

The same consideration applies to running tests using the console runner.

Opening Visual Studio Solutions

When Visual Studio support is enabled, solution files may be opened as well. All the output
assemblies from contained projects of the types supported will be loaded in the tree. In the case
where all contained projects are located in the subdirectories beneath the solution, it will be
possible to load and run tests using this method directly.

When a solution contains projects located elsewhere in the file system, it may not be possible to
run the tests – although the solution will generally load without problem. In this case, the Project
Editor should be use to modify and save the NUnit test project so that there is all referenced
assemblies are located in or beneath the application base directory.

Adding Visual Studio Projects to the Open Test Project

When Visual Studio support is enabled, the Project menu contains an active entry to add a VS
project to the loaded project. The output assembly will be added for each of the configurations
specified in the VS project.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 16

Configuration Editor

The Configuration Editor is displayed using the Project | Configuration | Edit… menu item and
supports the following operations:

Remove

Remove the selected configuration. If it was
the active config, then the next one in the list
is made active.

Rename

Rename the selected configuration.

Add…

Add a new configuration. The Add
Configuration dialog allows specifying an
existing configuration to use as a template.

Make Active

Makes the selected configuration active.

Close

Exits the configuration editor

Test Properties

The test properties dialog is displayed using either the View | Properties menu item on the main
menu or the Properties item on the context menu. It shows information about the test and – if it
has been run – about the results. The dialog contains a “pin” button in the upper right corner,
which causes it to remain open as the user clicks on different tests.

Test Tab

This tab gives general information about the test itself.

Full Name

The fully qualified name of the test. In the image below, a tooltip is displaying the complete
name, which did not fit in the label.

Test Count

The number of test cases contained directly or indirectly in this test.

Runnable?

Indicates whether the test can be run or not.

Reason

If the test is not Runnable, indicates the reason. This can be the reason given on an ignore
attribute or an error such as trying to apply the Test attribute to a private method.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 17

Result Tab

This tab is only visible if the user has run the selected test. It gives information about the success
or failure of the test.

Success / Failure

Label indicating whether the test passed or failed.

Time

The elapsed time in seconds to run the test.

Message

If the test failed, the error message is shown here. In the image below, a tooltip is displaying
the full text of the message.

Stack

If the test failed, the stack trace at the point of failure. In the image below, the stack display is
truncated but could be displayed in a tooltip by the user hovering with the mouse.

Project Editor

The Project Editor is displayed through the Project | Edit menu item and allows creating or
modifying NUnit test projects. It should be noted that a Test Project is active whenever any tests
have been loaded, even if no project was explicitly created or referenced. In the case of an
assembly being loaded, an internal wrapper project is created. This allows the user to change

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 18

settings and save the project directly without needing to perform any extra steps. The editor
consists of a common area and two tabs, as seen in the image below.

Common Area

The common area of the Project Editor contains a label showing the full path to the project file, a
dropdown combo box allowing selection of the configuration to be edited and a button, which
opens the Configuration Editor, discussed elsewhere in this document.

General Tab

The General tab allows setting a number of options pertaining to the selected configuration, all of
which will be stored in the NUnit project file as attributes of the <config> xml node.

ApplicationBase

The ApplicationBase defaults to the directory containing the project file. The user may set it
to another path provided that path is contained under the project file directory.

Configuration File Name

The configuration file defaults to the name of the test project with the extension changed
from .nunit to .config. The user may substitute another name.

PrivateBinPath

By default, the PrivateBinPath is generated from the assembly locations specified on the
Assemblies Tab. For those applications requiring a different level of control, it may be
specified manually or using this editor or placed in the configuration file.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 19

Results Tab

The results tab contains the list of assemblies that form part of this test project. A checkbox is
used to indicate which assemblies contain tests. This allows use of the automatically generated
private bin path by including assemblies that the tests depend upon but leaving the box
unchecked. The GUI does not attempt to load these unchecked assemblies but does use their
locations in generating the PrivateBinPath and also watches them for changes, if automatic
reloading of tests is enabled.

Note: Although the dialog shows the location of assemblies as absolute paths, they are always
persisted in the NUnit project file as paths relative to the application base. This allows moving
projects as a whole to a different directory location.

Add Assembly

Opens a dialog allowing adding an assembly to this configuration.

Add VS Project

Opens a dialog allowing selection of a VS project to be added to this project.

Edit Path

Opens a dialog allowing the user to change the path to the selected assembly in this
configuration.

Remove Assembly

Removes the selected assembly from this configuration.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 20

Samples

C# - This sample demonstrates 4 failing unit tests and 1 ignored test written in C#.

VB.NET - This sample demonstrates what should be four failing unit tests and 1 ignored test.

Managed C++ - This is the same example as the others with 4 failing unit tests. This is correct
when compiled in Debug mode. In Release mode the divide by zero test succeeds.

Visual J# - This has the same tests as the other samples, except written in Visual J#. If you have
not installed this when you go to open the Visual Studio solution file it will inform you that
the file solution file cannot be loaded.

Money - This is C# version of the money example which is found in most xUnit implementations.
Thanks Kent.

Money-port - This is an example of the minimum amount of work that is needed to upgrade from
previous versions of NUnit to this version.

Code contribution philosophy

First and foremost we have done our best to insure that this program was developed test-first. As
such we will accept no code changes without associated tests. As for bug fixes we plan to follow
the procedure that we write a failing unit test first and then fix it. In this fashion the number of
tests that we have will grow over time. Lastly, if a change breaks an existing test it is the
responsibility of the person making the change to first understand the ramification of the change
and either fix the test or alter the modification that caused the problem. That said, if you are
interested, so are we, please help make Nunit the best xUnit tool in any language.

License

Copyright © 2002-2003 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov, Charlie
Poole

Copyright © 2000-2003 Philip A. Craig

This software is provided 'as-is', without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment (see the
following) in the product documentation is required.

Portions Copyright © 2002-2003 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov,
Charlie Poole or Copyright © 2000-2003 Philip A. Craig

2. Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

3. This notice may not be removed or altered from any source distribution.

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 21

Developers

James Newkirk (jim@nunit.org)

Michael C. Two (mike2@nunit.org)

Alexei A. Vorontsov (alexei@nunit.org)

Philip A. Craig (philip@nunit.org)

Charlie Poole (cpoole@pooleconsulting.com)

Thanks and Acknowledgements

Doug de la Torre

David White

Ethan Smith

Al Gonzalez

Rob Jeffries

Ron Jeffries

Ben Lowery

Kent Beck and Erich Gamma for starting the whole thing.

 V2.1 Detailed Corrections

Changes from RC1 to Final Release

Feature Requests Implemented

660774 – Document that assemblies cannot be loaded via a UNC

Bugs Fixed or Closed

794994 – Include Type differences in FailEquals Message

795399 – Assembly load failed from UNC Path

798474 – No intellisense documentation in VS.NET

Changes from Beta 2 to RC1

Feature Requests Implemented

779509 – Test execution order should match TreeView order

781617 – Execution order

784114 – Provide Framework Version Info

660760 – Document how NUnit may be launched from Visual Studio .NET

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 22

777251 – Test Case Properties dialog should support resize

Bugs Fixed or Closed

784001 – single central installation of nunit.framework.dll

784128 – Invalid Configuration File Name Entry using default setup

785027 – Enable VS support by default to avoid confusion

785006 – GUI: Improve default tree splitter position

785015 – NullReferenceException on Empty Errors & Failures Copy

785591 – pdf Readme bugs

788934 – NUnit and .NET versions issue

784119 – Project should require one or more configurations

785259 – Running is not wanted

784607 – Error About using VS solution

790785 – XML Output file can't contain path

790818 – Build with NAnt is broken

699640 – Tests run in nunit-console fails

791421 – Tests using STA COM objects fail

791518 – NUnit.tests fail when build with NAnt

Changes from Beta 1 to Beta 2

Feature Requests Implemented

660759 – Document how to install NUnit manually

777256 – Test Case Properties dialog should support cut and paste

660762 – Make text in error list copyable

641437 – wrapped exception

672419 – InnerException information isn't displayed

678291 – Errors in TearDown hide the real errors

692128 – Show type of exception in GUI output

Bugs Fixed or Closed

775813 – Running Nunit Gui 2.1 after install throws a cast exception

775795 – V2.1 Beta 1 Install has naming conflict

636535 – Problem with managed C++ wrappers

761711 – NUnit doesn't allow lease-time to be changed

777566 – nunit.build missing

777571 – NUnit.build has "jpg" for "bmp" files

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 23

776237 – console runner doesn't show all results in debugger

764042 – detailList tooltip not cleared after succesful test

748092 – nunit-console NoTestFixturesException

725699 – Permission problem accessing resources in .NET 1.1

745987 – Nunit-GUI frequently fails to unload assembly

739798 – exception not being trapped properly

739800 – not catching exception properly

649189 – StdOut display not correct for 2+ runs

637296 – NUnit trying to delete folder and cannot

640173 – Assembly Load Failure

653236 – Problem error loading assembly

655291 – InvaildTestFixtureException gets lost

686560 – AppDomainUnloadedException in nunit-console

776720 – assert.equals doesn't handle decimal correctly

761715 – hosting a winform in an NUnit-test gives exception

767594 – NUnit hangs in case of stack overflow

740190 – GUI/Console runners report spurious failures

749590 – Overflow exception when defining static test methods

761717 – testdriver doesn't exit when threads are running

644494 – Bug with SSL

614258 – R/o access to test dir fails badly

760863 – Error with V2.1 ObjectsEqual

614251 – Serialization test leaves test droppings

633818 – Exception error opening databases

694279 – XmlResultVisitor can't handle failure in xml string compare

779455 – Truncated Labels in GUI Runner

779523 – GUI Runner forgets that no tests were loaded

779551 – Can open multiple "About" dialog boxes

779445 – Incorrect Tab Order in Options Window

779490 – Configuration Editor allows empty name

779511 – Inconsistent "XML" spelling in user interfaces

778872 – v2.1 is not backwards compatible with .NET 1.0

777570 – NUnitForm resource naming problem

779512 – Statistics not set for treeview selection

781718 – Incorrect handling of ExpectedException test cases

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 24

767256 – Static initializer exception report not helpful

675680 – Exception names not reported

660772 – TestFixture not found error when assembly can't be loaded

782579 – Installer fails

660776 – NT required?

Changes from V2.0 to Beta 1

Feature Requests Implemented

597609 – Support a cancel/stop operation

606393 – Maintain results in gui when reloading

603449 – Option to disable assembly watching

597626 – /wait gone from NunitConsole.exe

600119 – Per-test statistics in nunit-gui

616931 – Sort order of TestFixtures

594486 – Loading Switch

599120 – Show help when invalid GuiRunner options

598814 – Add TestFixtureSetUp/TearDown

660750 – A class SetUp which runs each time Run is clicked

623090 – Warnings if fixtures not public

609643 – Compound structure

614602 – Load multiple test dlls in nunit-gui

660751 – Do not expand Tree by default

629138 – Add Class SetUp/TearDown

516161 – Test Project Files

629136 – Remarks for TestFixture and Test Attributes

677192 – Recursive assembly load by reference

587855 – Need option to select default test case

660767 – Assert should indicate which source line

669203 – Save and restore splitter positions

660761 – Add shortcut key to Recently Used list

648492 – NUnit doesn’t display in reference list

676195 – Increase the Number of Recent Assemblies

600182 – REPOST: Output to IDE Output Window

660764 – Set focus, when StdOut or Errors are reported

660745 – NUnit GUI should nest nested classes

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 25

757160 – Add Registry key to show assemblies in .NET Reference dialog

755787 – Realtime Tree updates

755791 – Stop button in GUI

Bugs Fixed or Closed

610910 – UI Problems while Test is running

624007 – Object has been disconnected

624935 – Splitter messes up Run Area

624943 – Disabled Run Button

610906 – Running Test Domain Unloaded

615750 – Test of unsafe C# code stack ovflw excpt

619823 – crash when specifying invalid assembly

630663 – Documentation

618673 – Installer fails with Interrupted.. error

640533 – NUnit crashes when assembly is updated

644877 – Assembly Load failure

599145 – Failed check of sign. For MS.VisualBasic

609440 – I have an error when I run nunit v2 rc2

618945 – installer fails

665558 – ConfigurationSettings not available

661571 – nunit task from nant = failure

660770 – ExpectedException doesn’t work as documented

656401 – Missing dll reference in documentation

648152 – Click on failed test then STDOUT tab

668406 – ConfigurationSettings w/ networked assemblies

699661 – Nunit-gui exits when pressing space bar

699640 – Tests run in nunit-console fails

703096 – Run All Tests in All Assemblies

667664 – GUI updates

646933 – Assembly Load failure: possible solution

699641 – TestResult.xml written in wrong directory

675968 – Another open database bug – VS.NET 2003

706643 – Switching to StandardOut pane with too much text fails.

707671 – System.Net.IPAddress.Parse – Invalid Pinvoke metadata format

713681 – [STAThread] Attribute Missing in Console Runner

 NUnit V2.1 Final Release – 1 September 2003

Copyright © 2003 NUnit V2.1 26

713388 – (BUG) Dependent assemblies aren’t reloaded

720225 – AssertEquals() incorrectly compares decimals in .NET 1.1

722037 – Infinite loop causes test harness to lock

730822 – SetUp() should fail if an exception is thrown during execution

731422 – AssertEquals fails with two Decimals in .NET v1.1

731258 – suite not recognized

738425 – NUnit-console.exe runs tests from a MTA

730870 – SetUp() should fail if an exception is thrown during execution

640467 – Newline not rendered in GUI

671642 – Multiline ToolTip messages improperly displayed

735111 – assembly loading fails if assembly name contains a dot char

743442 – timing-tests won’t compile

735138 – nunit.console

742163 – NUnit.Extensions.RepeatedTest.cs won’t compile

770942 – AppSettings not loaded when using nunit-console.exe

744649 – Lengthy COM calls cause failures in Console.WriteLine

Bugs fixed during Beta 1

775791 – nunit-gui requires admin rights in 2.1 beta 1

775796 – NUnit 2.1 Beta 1 install requires .NET 1.1

776053 – NUnit 2.1 won't install with 2.0

775566 – Typos in Readme.pdf with nunit v2.1 beta 1

